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Abstract

There exist two types of stationary instability of the flow over a rotating disc

corresponding to the upper-branch, inviscid mode and the lower-branch mode, which has a

triple deck structure, of the neutral stability curve. A theoretical investigation of the linear

problem and an account of the weakly nonlinear properties of the lower branch-modes have

been undertaken by Hall (1986) and MacKerrell (1987) respectively. Motivated by recent

reports of experimental sightings of the lower-branch mode and an examination of the

role of suction on the linear stability properties of the flow here we investigate the effects

of suction on the nonlinear disturbance described by MacKerrell (1987). The additional

analysis required in order to incorporate suction is relatively straightforward and enables

us to derive an amplitude equation which describes the evolution of the mode. For each

value of the suction a threshold value of the disturbance amplitude is obtained; modes of

size greater than this threshold grow without limit as they develop away from the point of

neutral stability.

t This research was supported in part by NASA Contract No. NAS1-18605 while the authors were in residence

at ICASEj NASA Langley Research Center, Hampton, VA 23665.





1. Introduction

The stability of rotating disc flows has been the subject of many studies, one reason for

this being that the basic boundary layer flow given by Von K_irm£n's (1921) exact solution

is fully three-dimensional. Interest also stems from the observed similarities in the type of

instability occurring in rotating disc flow work (Gregory, Stuart & Walker 1955) and near

the leading edge of a swept back wing, Poll (1978). This instability, known as cross-flow

instability, is due to the inflectional character of the basic velocity profile and was first

studied extensively by Gregory et al. (1955). They showed with china clay techniques that

this instability took the form of a regularly spaced pattern of equi-angular spiral vortices

which was stationary relative to the disc. Stuart (in Gregory et al.), using inviscid theory,

suggested that the instability could be associated with a particular inflectional profile in

which the inflection point coincided with a point of zero velocity somewhere in the flow. His

calculation gave the predicted number of vortices to be approximately four times greater

than the observed value of about 30 but the angle of 13 ° between the axes of the vortices

and the radius vector was in excellent agreement with their experiments.

Several attempts have been made to explain the observed spiral patterns by means

of a linear stability theory (see, for example, Cebeci &: Stewartson (1980), Malik et al.

(1981), Mack (1985), Malik (1986)). Malik et al. (1981) showed that Coriolis force and

streamline curvature cannot be neglected- a point first made by Faller& Kaylor (1966) and

Lilly (1966) in the context of the Ekman boundary layer. The theoretical results of Mack

(1985) strongly suggest that the spiral streaks observed in flow visualisation experiments

are the constant phase lines of the merged wave patterns produced by several random

sources on the disc. This was first found by the experimental investigations of Wilkinson

&: Malik (1985) who revealed that the wave patterns from each point source spread out

circumferentially downstream of the source and that the wave patterns from a number of

sources eventually merge and cover the entire circumference of the disc.

Experiments by Fedorov et al. (1976) showed that for various rotation rates of the disc

an instability occurred which also appeared as a pattern of spiral vortices which numbered

in the region 14 to 16 and which had their axes inclined at angles of about 20 ° to the

radius vector. These discrepancies between these observations and those of Gregory et al.

(1955) imply that the vortices seen by Fedorov et al. were not those of Gregory et al.

Malik (1986) calculated the neutral stability curve for stationary disturbances and

demonstrated that two types of mode could exist. The first, the upper branch of the

neutral curve, corresponds to the inviscid mode described by Stuart in Gregory et al. The

second, the lower branch mode, is an essentially viscous disturbance which corresponds to

zero wall shear stress of the crossflow velocity profile.



A linear asymptotic investigation of the inviscid mode at high Reynolds number was
conducted by Hall (1986); work that has been extended to include nonlinear effectsby

Gajjar (personal communication). Further, Hall (1986) demonstrated that the lower
branch viscous mode is governedby a triple deck structure (which is derived from the
classical structure as reviewed by, for example, Smith 1982) and it is this mode which

is thought to have been observedby Fedorov et al. (1976). MacKerrell (1987), hereafter

referred to as M, extended the study of Hall (1986) in order to give an account of the weakly

nonlinear properties of the lower branch mode. Following the framework set up in Hall

(1986) M derived solutions which enabled the finite amplitude growth of a disturbance close

to neutral to be described. Importantly, she found that nonlinearity has a destabilising

effect on the vortices and discovered the existence of a threshold amplitude (in the sense

of Stuart 1960, 1971 and Watson 1960) such that disturbances smaller than the threshold

value decay as they move away from the neutral position whereas those above threshold

grow explosively. This led M to conclude that for small disturbances the inviscid mode

of Gregory et al. (1955) is probably dominant whereas for larger amplitude perturbations

the short wavelength mode observed by Fedorov et al. (1976) is the more important.

Until very recently there have been, to the best of the authors' knowledge, few, if

any, other observations of the short wavelength disturbance. At the 1991 ICASE/LaRC

workshop on transition and turbulence Corke reported that in his experiments on rotating

disc flows a subcritical stationary instability had been observed- the mode which is almost

certainly that seen by Fedorov et al. (1976) and analysed in M. At the same meeting

we learned of an investigation by Dhanak (1991) who has extended the calculations of

Malik (1986) to include the effects of suction. The role of suction in practical flows is an

important one for it is believed that imposition of suitable suction on a boundary layer

can often stabilise the flow and thence delay the onset of transition. Dhanak (1991) found

that if suction is applied to the rotating disc flow then the overall effect, at least according

to linear theory, is that the flow is indeed stabilised: conversely blowing destabilises the

flow. This finding invites the question as to the effect of suction on the nature of the short

wavelength mode described by Hall (1986) and M and it is this that we address here.

In §2 we follow the nonlinear analysis of M and indicate the modifications required in

order to incorporate suction into the flow. We then execute some numerical work to obtain

a quantitative description of the flow properties and conclude with some discussion.
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2. Formulation of the problem

We consider the case in which the disc z = 0 rotates about the z-axis with angular

velocity Yr. Relative to cylindrical polar co-ordinates (r, 8, z) which rotate with the disc,

the continuity and Navier-Stokes equations, when suitably non-dimensionalised, become

V.u=0, (2.1)

0u 1 2
-_- + (u.V)u + 2(kA u)- r_ = -Vp+ _eeV u, (2.2)

where u = (u, v, w) are the velocity components, p is the fluid pressure, _ and k are unit

vectors in the r- and z- co-ordinate directions and the Reynolds number Re = ftL2/u

with u the kinematic viscosity of the fluid and L a reference lengthscale. The Reynolds

number is taken to be large throughout.

For the ensuing analysis it is convenient to define s = Re-l_ and with z = s8r/ the

basic steady flow is given by the solution

where u, v, w and t5 satisfy

_ - (1 + _)2 + _'t_ = _", 2a(1 + _) + _'_ = _", (2.3a, b)

E I + 2fi -- 0, /3t q_ t_l _ _, _- 0.

The appropriate far field conditions take the forms

(2.3c, d)

---* O, _ _ -1 as rI -----* oo, (2.4a)

whereas on the disc surface we impose

fi=_=0, (2.4b)

together with

t_ = -S, (2.4c)

where S is a measure of the suction (o0 > O) or blowing (S < O) applied to the flow.

The linear stability of the basic flow (2.3), (2.4) in the absence of suction or blowing

was addressed by Hall (1986). He demonstrated that the flow is susceptible to a stationary

disturbance which is governed by an appropriate triple deck structure whose lower, main

and upper decks are of thicknesses O(_9), O(e s) and O(e 4) respectively. Hall showed that



the disturbance wavenumbers in the r and 0 directions are O(e -4) and solutions were

sought proportional to

[ (/ )]i a(r, e)dr + 0/3(e) (2.5)
E-exp _-_

where the wavenumbers a and/3 expand as

a = ao+_2al +_3a2 +..., /3 =/30 + e2/31 + e3/32 + .... (2.6)

It was found by Hall (1986) that, as shown by Gregory et al. (1955), the 'effective'

velocity profile for a three-dimensional disturbance with wavenumbers a and/5 in the r

and 0 directions is rag + flO. However, if the effective wall shear rag' + flO' does not vanish

the modes are necessarily time dependent for a and/3 real. Therefore, in order to seek

stationary modes which are neutrally stable at the location r the values aj and/3i must

be chosen so as to reduce the effective wall shear to zero at leading order.

MacKerrell (1987) extended the work of Hall (1986) to a weakly nonlinear setting. She

demonstrated that in order to obtain a classical evolution equation for the disturbance it

is necessary to examine disturbances of amplitude O(e ]) within the lower deck. Further,

the mode then evolves in an O(¢) neighbourhood of the neutral position r = g and, as in

usual nonlinear triple deck work, it is the lower tier of the triple deck where nonlinearity

manifests itself. Our objective here is to generalise the work of M to investigate the role

of the suction parameter S and in the following we deliberately give the briefest of details.

The analysis differs only slightly from that of M and so we highlight the main differences

between the present work and that contained in M. The omitted details may be found in

M and the reader is referred to that paper where necessary.

Following the argument of M we define a new variable rl in the neighbourhood of the

neutral point _ by

r = _+ ¢rl, (2.7a)

and seek disturbances whose radial dependence may be written in the form

0 ia0 ial 1 0
-- + + ---. (2.75)

Or _4 7 e 0rl

Within the lower deck, where we define the 0(1) co-ordinate ( by z = e9(, we suppose

that the basic flow velocity components (2.3) expand according to

g =_:go_ -It- _:2g1_2 "{'- e3fi2_ 3 + "'',

=_V0_ "-_ _2V1_2 + g3_2_3 +''', (2.8)

,_ = _ $ + _2_1_2 + _3_2_3 + ....
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If we perturb the basic flow by writing

(u,v, w,p) = (_ + u,_ + y,?_ + w,p+ P), (2.9)

then in the lower deck the disturbance quantities develop according to

=_i [_0Cl _'-1 ]U
/ e/302 (_0-b2e_21_-b...)+---bU'0+...e JE

-+- harmonic terms -k- complex conjugate,

(2.10a)

together with a similar expansion for V. In addition

W =e{ [ i%eSCa ]-- f12 [( aO_fil _ /_0Vl)_ 2 '_ "''] "_ C6V['rl "_ 67_/r2 -[- "'" E

+ harmonic terms + complex conjugate,

(2.100)

and

P [(:pl + :& +..)] E
+ harmonic terms + complex conjugate.

(2.10c)

Here Cl(rl) is a scaled amplitude of the disturbance and we have made the definition

7°2 - a°2 + _r-_-" (2.11)

These forms of the disturbance, in which all the unknowns are functions of { and rl, were

first derived by M who also elucidated the forms of the harmonic terms. However, we find

that the crucial harmonic and mean flow terms which interact to drive the fundamental

and hence lead to the desired amplitude equation are unchaxiged by the imposition of

suction or blowing. Hence, for brevity we do not repeat these results from M and now

merely state how her overall findings need to be modified.

Firstly, following the procedure adopted in M, we find that lYd2 satisfies

03W2 s202W2
Os 3 Os2

n -AT_ . 1 82rlC1

-- + 2sIYV2 -A-z%2D1 - 2r_/2°Ca r -b _%%/31A-_ /3o2_

q- ikl(ralfiO -[- j31vo)A-_s 2 - if12%A-¼% Cls2
Zo

2 • A_s2 _ (--'_0C2Cl -_ 2i_t°rlClU°A-4fl0----_ 1+ v2°h_] U(O'v/2S)U(O,O)

1 _0s 2 dC1 - i _/oD1

-- ?fioA-Z fl_ dr1 + 2SAz 3---_o + RHS,

(2.12a)
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where A _----i(aoeftl +/_o_1), Dl(rl) and C2(rl) are functions of C1 given in M, kl is a real

constant whose precise value will turn out to be unimportant, s _-- A¼_ and an asterisk on

a quantity denotes the complex conjugate of that quantity. Further, U(a, x) denotes the

usual parabolic cylinder function (see, for example, Abra.mowitz & Stegun (1964)) and

• _4 A-___1
RHS - - 2i_/.JoA-_ - zklA-_s (_a0fi2 + f10_2) + 2i;foC1 t3o .guovo

- [i(_,_o + _,%)A-_+3i_-2_2(_0_ + _0_)]

[ 2i'°'_ (1+ ]× L_°_C_fl(_)+ --_-o_ _0_/ v(0,0)

+ [_(_0_ + Zo_)a-2_ + i(_,_0 +Z_o)a-_]

[
x /%2C1F_(s) 4- --_--o --1 fi02) V(0,0)

_ _z,-_ _gC_F_'(_)+-_o_1 1+ _g/ v(0,0) '

where Fl(s) and F2(s) satisfy

u(o, v_)
u(0,0)

(2.12b)

FI"'-s2F_ 4- 2sF_ = I, FI(O)= F_(cx_) =O,

and

f_" - s2F_ 4- 2sF2 = V(O, sv_), F2(0) = F_(c_) = 0.

The solution for U0 when S = 0, say U0o, is given in Hall (1986). It is then straightforward

to obtain

U0 = 6"00 + SA-¼C_ _°_° sU(0,_v_)

v_o _ v(0, 0)

In order for the disturbance to vanish on the disc surface we find from the continuity

equation that 01?d2/0s = 0 on s = 0. By solving (2.12) subject to this condition we obtain

the desired amplitude equation in the form

dCa _ (a 4- ic)raCa + (b + id)Ca[C_[ 2 + (e + i f)C_, (2.13)
dr1

where a, b, c, d, e and f are real valued constants, the more important of which are detailed

presently. Multiplying (2.13) through by C_, adding the complex conjugate and replacing

ra by r_ = r_ + (e/a) yields the amplitude evolution equation

d

dr; (IC_l_) = 2arriVal2 + 2blC_l_' (2.14)



and the form of the solution of (2.14) depends on the signs of a and b. /.From (2.3) and

(2.4) we find that
I S_o S_o

!_1 = -_ 2 and _1=-- 2

and recalling the imposition that the leading order wall shear (= a0_iT0 +/70_0) must be

necessarily zero in order to obtain stationary vortices we have A - -i_o/2. Following

the manipulations of M we finally obtain

a ---- /7°27°I1 (2.15a)
f2_0(_0_)½'

and

where

(

(2.15c)

I1 - r_(o)= L °° OU(O,O)2U(0, 0) dO = 0.59907, (2.15d)

and

2Fi(O) L _ OU2(O,O)I2 - U(0,0) - U--_,_ dO= 0.45o95. (2.15_)

Consequently, we now have the outcome that the formulae (2.15) for the coefficients of

the amplitude equation appear to be independent of the suction parameter S and hence

are identical to those of M. However, the constants appearing in the expansions (2.8) for

the basic flow quantities close to _ = 0 are functions of _' and thence so are a and b. In

the following section we conduct a few calculations for various values of 3' and draw some

conclusions.

3. Results and discussion

In order to calculate the coefficients a and b in (2.14) we merely need to solve the

basic equations (2.3) subject to boundary conditions (2.4) and note that the function

(fal_0 +/_l_0) appearing in definition (2.15c) is given by

iT0u0 1+ /2 = iA + %
'3/ISl -Ji- _o ul)



a relation which was deduced in M. This relation also serves to determine the value of 90 and

this, in addition to the requirement that the leading order wall shear affi0 + fl0v0 vanishes,

furnishes the leading order radial and azimuthal wavenumbers a0, rio. The equations for

the basic flow were solved using a suitable NAG routine and then we found it convenient

to write

a = Af-¼, b = B_-_, (3.1)

where the functions A(S) and B(_') are given in Figure (1). We note that for all values of

suction or blowing, -oo < S < oo, we have A < 0 and B > 0 and the former condition

implies that the amplitude of the solution increases or decreases depending on whether r

is less than or greater than the neutral value. It is also straightforward to demonstrate

that if we write

IC,I_= (4:77_)y and _ = _/v':--_

then (2.14) becomes
@

-- 2xy + y2,
dx

whose solution is
e--x 2

(._ D
where y0 -- y(0) and erf(x) = _ fo e-'=dt. Since y(x) must be greater than or equal to

zero and 0 _< eft(x) < 1, the solution is bounded and valid for all x if y0 < 2/yrs. However,

for y0 >_ 2/v/-_, y(z) becomes infinite at some point z0, 0 < x0 _ co, and the solution is

only valid for x < x0. Thus the value Y0 = 2/V/-_- represents a threshold between solutions

which grow indefinitely and those that decay to zero. The corresponding disturbance

threshold value

Dvr° i- "_b vm 7-B_' (3.2)

is shown in Figure (2). We note that for large suction (S >> 1) the threshold amplitude

becomes small whereas for large blowing this amplitude grows. We now verify these

qualitative results by considering the appropriate limits.

3.1. The large suction limit, _' _>>1.

For S >> 1, Stuart (1954) has demonstrated that the basic flow profile is confined

within a zone of thickness O(1/S) and if we write ( -- St/where ( = O(1) then, to leading

order,
1

- _ (e-_ - e-_), _ = 1- _-_ and _ = -_.
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Consequentlythe constantsdefined in the basic flow expansions(2.8) assumethe forms

1
= =-$

and these lead to the asymptotic expressions

8 ! --¼ -la -ts
A ,'_-2_I_I 1 ST ,,_ -1.2078S 4 ,

!

-27
B ,-, 24/14 S_ _, 8.1952S-r,

5

(21- 10v )X]

(3.3a)

(3.3b)

where/1 and/2 are given by (2.13b, c) and A and B are the coefficients in the amplitude

equations (2.14) and which were defined in (3.1). In turn, the threshold amplitude

-- 7 3

[C,]_ _ 0.3063S-_. (3.3c)

3.2. The large blowing limit, S <<-1.

In his consideration of boundary layer flows Pretsch (1944) demonstrated that the

influence of viscosity becomes almost negligible for sufficiently large blowing and this work,

together with the results emanating from studies of fluid injection in supersonic boundary

layers by Smith &: Stewartson (1973a, b), enable us to derive the flow structure for the

present problem when S << -1. We find it convenient to define the positive quantity

= -_'. It is now the case that the extent of the boundary layer increases and formally

becomes O(_). Therefore, if we define the O(1) co-ordinate zl by zl = _7/_ we find that

in the region 0 < zl < z'/2 the basic flow solution develops according to

(3.4)
1

= _Ho(zl) + _gl(zl) +...,

with

H0 = Go = cos 2 zl and F0 = cos zl sin zl. (3.5)

The profile decays algebraically as zl _ _r/2 and a thin viscous layer centred on this

point ensures that the solutions for fi and 9 are brought to zero at infinity. Details of this

viscous structure are not needed for present purposes as we are solely concerned with the

values of fi'(0) and _'(0). Consideration of the problem for Gl(zl) enables us to conclude

that the flow constants fi0 and % in (2.8a, b) are given, at leading orders, by

1 2
_0 -- _ and v0 -

S _3"
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In turn this leadsto the asymptotic results

i B i=_ __

A ,-_ -2_ I2"/IzS 4 ,_ -0.3020 (-5') _ (3.6a)

l

B~ 6±I "5 _ 2.0488 - " (3.6b)
(21- lOx/'2)/_ z

with a threshold amplitude given by

IAI 0.3063 (-S) ¼ f¼. (3.6c)

4. Conclusions

On Figures (I) & (2) we have indicated the asymptotic behaviours (3.3) & (3.6) both

for 5' < -1 and for S > 1. We observe that these one term asymptotic predictions are

very accurate for a surprisingly large range of values of S; indeed they are graphically

indistinguishable from the respective curves for IS[ greater than about five.

The most important deduction to be drawn from Figure (lb) is that the nonlinear

coefficient in evolution equation (2.14) is positive for all values of blowing and suction.

Thus in all cases nonlinearity has a destabilising influence and we have found the existence

of a threshold amplitude IC1 [5 as discussed by Stuart (1960, 1971) and Watson (1960) such

that all disturbances of amplitude less than threshold decay whereas those greater than

threshold become infinite as the distance from the neutral stability position increases. This

in turn leads to turbulence.

Our results described above seem to suggest, perhaps unexpectedly, that the effect of

including suction in the rotating disc problem tends to lower the threshold amplitude for

the disturbance, see Figure (2) and result (3.3c). Moreover, Figure (2) indicates that only

very moderate suction or blowing is needed in order to have a significant effect on the

critical disturbance amplitude. In the work of Dhanak (1991) it was found that suction

stabilises the flow in as much that inclusion of suction reduces the region of wavenumber/

Reynolds number parameter space in which the basic profile is unstable to stationary,

infinitesimal modes. However, since the threshold amplitude decreases with increasing

suction we speculate that an experimental configuration would need to be less strongly

forced in order for the subcritical instability to occur than would be the case for the zero

suction problem:- conversely, imposition of blowing destabilises the flow according to linear

analysis but the much larger threshold amplitude suggests that exciting the subcritical

disturbance experimentally might be extremely difficult.
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We now say a few words about the extension of our present problem into the

compressibleregime. Seddougui (1990) consideredthe effects of compressibility on the
subcritical mode of M and found that for both an adiabatic wall and an isothermal wall

the stationary mode is only possible over a finite range of Mach numbers. The analysis

conducted by Seddougui (1990) is naturally more involved than that of M but we have seen

here that, at least for the incompressible flow problem, the inclusion of suction requires

only relatively minor changes to the nonlinear analysis. With suction the variations in

the coefficients of amplitude equation (2.14) are predominantly due to the changes in the

wall shears; these are in turn due to the changing boundary condition (2.4c) for the basic

flow. Preliminary consideration of the compressible version of the present problem also

suggests that the modifications required in order to account for suction in Seddougui's

(1990) work will also be relatively straightforward. Further studies on this aspect are in

progress together with an investigation into the properties of the time dependent version

of the mode considered here.

Finally there is the question of the extension of the present work into the fully nonlinear

regime. Examples of fully nonlinear calculations for suction/blowing problems are typified

by those of Smith & Stewartson (1973a, b) for plate and slot injections into supersonic

boundary layers. Extension of our work along the lines suggested in these papers would

be valuable indeed.
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Figure (1). The dependences of amplitude equation coefficients A and B defined by (2.14),

(2.15) and (3.1) on the suction parameter S. a) logl0(-A): dotted lines indicate the

asymptotic values (3.3a) and (3.6a), b) logl0B: dotted lines indicate the asymptotic values

(3.3b) and (3.6b).
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Figure (2). Threshold amplitude parameter [ClJ¢_-_ as a function of suction parameter

together with asymptotic values (3.3c) and (3.6c) shown dotted.
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